

Elaine Cohen Hubal

National Exposure Research Laboratory, U.S. EPA

EPA/ACC Technical Workshop for the Voluntary Children's Chemical Evaluation Program (VCCEP)

December 11-13, 2001, Herndon, VA

Human Exposure Definitions

Exposure (potential dose)

The contact <u>at visible external boundaries</u> of an individual with a compound for a specific duration of time.

Dose (absorbed dose)

The amount of compound that crosses the external barrier into the body.

Exposure Assessment

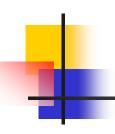
Exposure assessments (half of a risk assessment) are developed to characterize "real-life" situations

- Identify potentially exposed populations
- Identify potential exposure pathways
- Quantify the magnitude, frequency, and duration of chemical exposure

Direct Assessment

- Measure receptor contact with chemical concentration in the exposure media over an identified period of time
- Personal monitoring techniques are used to directly measure exposure to an individual during monitored time intervals
- Biomarkers are an indicator of absorbed dose that resulted from direct exposure.

Indirect Assessment


- To estimate exposure, use
 - available information on concentrations of chemicals in exposure media,
 - information about when, where, and how individuals might contact the exposure media,
 - algorithms and a series of exposure factors (i.e., pollutant transfer, pollutant uptake)
- Because of difficulty performing direct exposure assessments, indirect assessments are often used to perform the risk assessments required to make regulatory decisions.

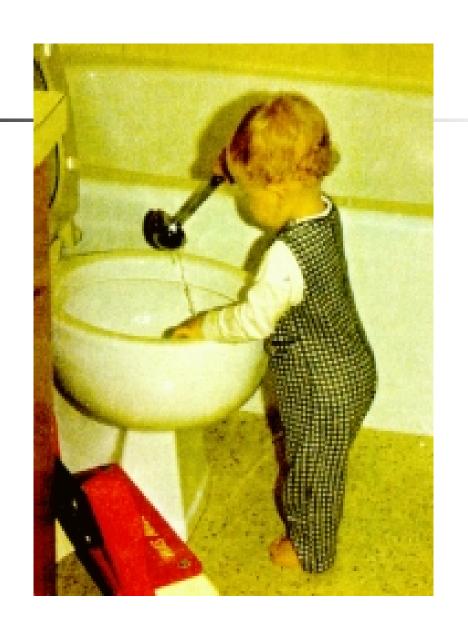
Exposure Factors

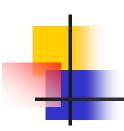
Indirect exposure assessments require data on the following exposure factors:

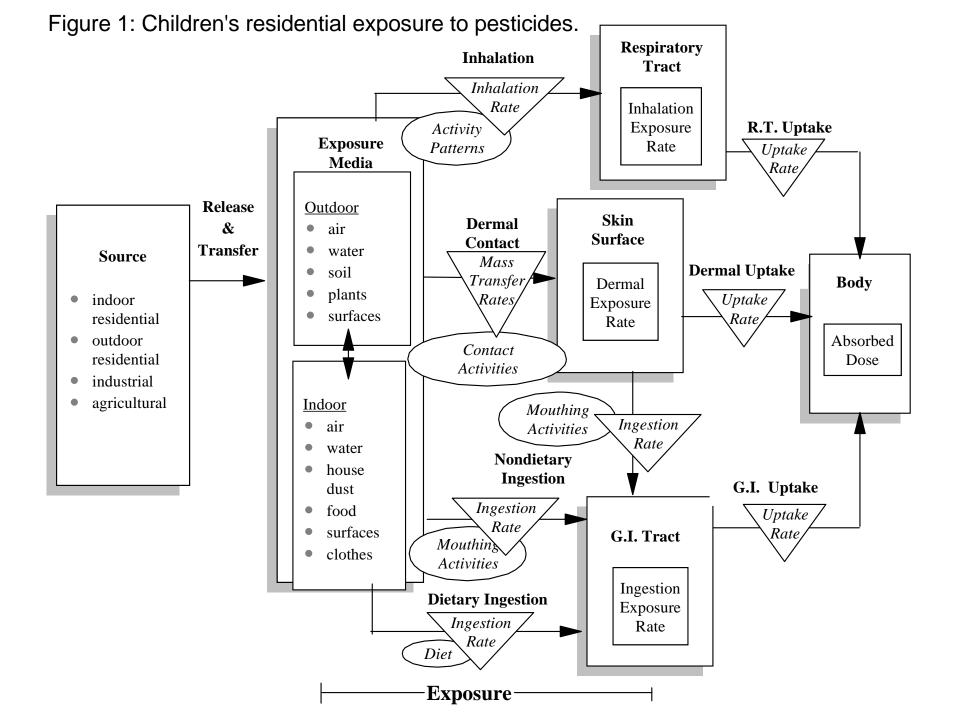
- Contaminant concentrations in the exposure media in the environment where the individual spends time
- Contact rates of the individual with the exposure media
- Contaminant transfer efficiency from the contaminated medium to the portal of entry
- Contaminant uptake rates through portal of entry
- Human activities

Human Activities

- Activity patterns provide information about when, where, and how individuals might contact exposure media.
- Contact rates, transfer efficiencies, and uptake rates are all a function of activity patterns.
- Tremendous variability in activity patterns for children.


Baby Blues





Approach

- Develop a conceptual model
- Identify potential exposure pathways and scenarios
- Define algorithms, exposure factors, and data requirements
- Perform a screening assessment to evaluate the range of exposures for, and significance of, each pathway
- Identify data gaps and uncertainties associated with current defaults
- Design research needed to address data gaps and reduce uncertainty

Exposure Pathways

- In general terms, a pathway is defined as the course that a chemical takes from its source to the receptor's portal of entry.
- To specifically evaluate potential for exposure, pathways are defined here by the exposure medium and the route of exposure.
- The pathway crosses the environmental medium with the human activity that leads to exposure

Examples:

Indoor air \rightarrow Inhalation

Turf \rightarrow Dermal contact

Exposure Scenarios

- For any given pathway there are a set of associated exposure scenarios
- Exposure scenarios combine
 - Source (industrial, residential)
 - Population (age group, geographic location, SES)
 - Timeframe (acute, short term, chronic)
 - Microenvironment (indoors, outdoors, home, daycare/school, other, in transit)
 - Macroactivity (active play, quiet play, sleeping, eating)

Exposure Pathways vs Exposure Scenarios

- Systematically identify potential exposure pathways to frame exposure assessments
- Identify exposure scenarios to specify values of exposure factors and to estimate distribution of exposure by any given pathway
- To identify exposure scenarios, need to use appropriate age/developmental benchmarks for categorizing children

Characteristics of Children that Influence Exposure

- Physiological characteristics
- Behavioral characteristics
 - Development (motor capacity, mouthing)
 - Physical Activities
 - Diet and eating habits
- Other characteristics
 - Gender
 - Socioeconomic Status
 - Race/ethnicity

Exposure Algorithms

- For each route, the algorithm mathematically expresses exposure as a function of
 - chemical concentration in the exposure medium
 - contact rate
 - rate of transfer from the exposure medium to the portal of entry
 - exposure duration
- Aggregrate assessments include all three exposure routes: inhalation, dermal contact, and ingestion
- Ingestion can be divided into two subroutes, dietary and nondietary ingestion.

Children's Activity Pattern Data

- Microenvironment
 The location the child occupies
- Macroactivity
 General activities such as watching TV, eating dinner, taking a shower
- Microactivity
 Detailed actions that occur within a general activity, such as hand-to-surface and hand-to-mouth behavior

Inhalation Exposure

For each microenvironment-macroactivity combination (me/ma), inhalation exposure over the 24-hr period is defined as

$$E_{inhale_me/ma} = C_{air_me} x IR_{ma} x ED_{me/ma}$$

 C_{air_me} = air concentration measured in the microenvironment (mg/m³)

 IR_{ma} = child's respiration rate for the macroactivity (m³/h)

ED = time spent in that me/ma over the 24-hour period (h/24h)

Exposure over the 24-hr period is the sum of all of the me/ma exposures.

Inhalation: Data Requirements

- Definition of important microenvironment-macroactivity combinations (me/ma) for inhalation exposure
- Air concentration in each microenvironment
- Inhalation rate for each me/ma
 (Based on child's age and weight)
- Amount of time child spends in each me/ma over 24-hrs

Macroactivity Data

- Macroactivity information for an individual contains at least one complete day of sequential location/activity data for each discrete major behavior. There are 9 studies that recorded such data, but only 4 include data on children.
- Data from all 9 studies contained in CHAD; a relational database using a common set of codes for activities, locations, intensity levels, and questionnaire information.
- Limitations of existing macroactivity data:
 - Activity codes are much too broadly defined and ignore many child-oriented behaviors
 - Location information may not be sufficient to assess dermal exposure

Dermal Exposure - Macroactivity Approach

For each microenvironment-macroactivity combination (me/ma), dermal exposure over the 24-hour period is defined as

$$E_{dermal_me/ma} = C_{surface} \times TC \times ED$$

 C_{surface} = surface loading measured in the microenvironment (mg/cm²)

TC = dermal transfer coefficient for the me/ma (cm²/h)

= time spent in the me/ma over a 24-hr period (h/24h)

Dermal: Data Requirements

- Definition of important microenvironment-macroactivity combination (me/ma) for dermal exposure
- Transferable surface loading in each microenvironment
- Time child spends in each me/ma over 24-hrs
- Transfer coefficient for each me/ma
 (Data need to be generated experimentally based on child age and behavior)
- Clothing pattern for the child that would affect the surface area available for transfer and absorption

Macroactivity Data

- Macroactivity information for an individual contains at least one complete day of sequential location/activity data for each discrete major behavior. There are 9 studies that recorded such data, but only 4 include data on children.
- Data from all 9 studies contained in CHAD; a relational database using a common set of codes for activities, locations, intensity levels, and questionnaire information.
- Limitations of existing macroactivity data:
 - Activity codes are much too broadly defined and ignore many child-oriented behaviors
 - Location information may not be sufficient to assess dermal exposure

Dermal Exposure - Microactivity Approach

For each microactivity, dermal exposure over the 24-hour period is defined as

$$E_{dermal\ mi} = C_{surface} \times TE \times SA \times EF$$

 C_{surface} = surface loading measured in the microenvironment (µg/cm²)

TE = transfer efficiency, fraction transferred from surface to skin

(unitless)

SA = surface area contacted (cm²/event)

EF = frequency of contact over a 24-hr period (events/24h)

Dermal: Data Requirements

- Definition of important microenvironments for dermal exposure
- Data on important microactivities that lead to contact with objects/surfaces
- Residue loadings for the objects/surfaces contacted
- Fraction of residue transferred from surface to skin during contact event (requires characterization of the contact for each microactivity)
- Surface area of objects/surfaces contacted
- Number of contact events over 24-hours

Microactivity Data

- Approaches to gathering data
 - Real-time hand recording
 - Videotaping
- Comparing results among studies is difficult due to differences in
 - Ages of children
 - Reported summary statistics
 - Categories of body parts and objects contacted
- Limitations
 - Few data sets, small sample sizes
 - Require knowledge on important contact parameters

Indirect Ingestion Exposure

For each microactivity resulting in indirect ingestion, exposure over the 24-hour period is defined as

$$E_{ing/mi} = C_x \times TE_x \times SA_{xm} \times EF$$

x = hand, object, food item, or anything else that enters the mouth

 C_x = surface loading on x (μ g/cm²)

TE_x= transfer efficiency, fraction transferred from x to mouth (unitless)

 SA_x = area of x that is contacted by the mouth (cm²/event)

EF = frequency of indirect ingestion events over a 24-hr period (events/24h)

Indirect Ingestion Data Requirements

- Information on microenvironments/macroactivities that lead to indirect ingestion (including information on locations where an individual child consumes foods)
- Information on what surfaces, body parts, toys, etc., are mouthed
- Information on handled and consumed foods for an individual child
- Surface loadings for any objects or surfaces (including hands) mouthed by children
- Information on child's hand washing practices
- Transfer efficiency from the surface (including hands) to mouth during a mouthing event
- Number of mouthing events during a 24-h period, and
- Surface area of object mouthed

Direct Dietary Ingestion

For each food ingested, exposure over the 24-hour period is defined as

$$E_{food} = C_{food} \times W$$

 C_{food} = concentration of chemical in food item (µg/kg)

W = weight of food item consumed (kg/d)

- Total dietary exposure over the 24-hr period is the sum of all of the foods consumed
- Data requirements include specific information about the types and quantities of foods eaten as well as the concentrations of chemical in these foods

Challenges

- Identify those chemicals, pathways, and activities that represent the highest potential exposures to children
- Determine the factors that influence exposures to children
- Develop approaches for measuring multimedia exposures to children, including approaches that account for important activities that take place in home, school, and daycare settings
- Generate data on multimedia chemical concentrations, biomarkers, and exposure factors that can be used as inputs to aggregate exposure models for children